免费看黄色大片-久久精品毛片-欧美日韩亚洲视频-日韩电影二区-天天射夜夜-色屁屁ts人妖系列二区-欧美色图12p-美女被c出水-日韩的一区二区-美女高潮流白浆视频-日韩精品一区二区久久-全部免费毛片在线播放网站-99精品国产在热久久婷婷-午夜精品理论片-亚洲人成网在线播放

Better soil quality management can capture carbon to lower global temperature: study

Source: Xinhua| 2018-08-30 02:52:31|Editor: yan
Video PlayerClose

WASHINGTON, Aug. 29 (Xinhua) -- A study published on Wednesday in the journal Science Advances showed that traditional ways of improving soil quality on farms and rangelands could pull significant amounts of carbon out of the atmosphere and slow the pace of climate change.

Researchers from University of California (UC), Berkeley found that well-established agricultural management practices such as planting cover crops, optimizing grazing and sowing legumes on rangelands, if instituted globally, could capture enough carbon from the atmosphere and store it in the soil to make a significant contribution to international global warming targets.

The study found that improved agricultural management could reduce global temperatures by 0.26 degrees Celsius by 2100, when combined with aggressive carbon emission reductions.

The Intergovernmental Panel on Climate Change's goal of limiting the average global temperature increase between now and the year 2100 is one degree Celsius or two degrees Celsius above temperatures before the industrial revolution.

"We found that there are a wide range of practices deployable on a large scale that could have a detectable worldwide impact. A big take-home message is that we know how to do this, it is achievable," said the paper's senior author Whendee Silver, a professor of environmental science, policy and management at UC Berkeley.

According to the study, by throwing in biochar, essentially charcoal, obtained by burning crop residue in an oxygen-free environment, these practices could offset even more warming, potentially as much as 0.46 degrees Celsius.

However, it is "is only achievable if you couple sequestration with aggressive emissions reduction," said Silver.

If carbon concentrations increase in the atmosphere, then sequestration becomes less effective at reducing temperature, according to the study.

Also, the researchers did not consider newer practices, such as composting, that are not studied as widely, nor did they consider the effect of improving soil on abandoned land, both of which could increase soil carbon sequestration even more.

"The point of our paper was to look at the temperature effect of implementing existing low-tech technologies already practiced within agriculture, in developing as well as developed countries," said Allegra Mayer, a UC Berkeley graduate student and the paper's lead author.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011105521374289481