"/>

免费看黄色大片-久久精品毛片-欧美日韩亚洲视频-日韩电影二区-天天射夜夜-色屁屁ts人妖系列二区-欧美色图12p-美女被c出水-日韩的一区二区-美女高潮流白浆视频-日韩精品一区二区久久-全部免费毛片在线播放网站-99精品国产在热久久婷婷-午夜精品理论片-亚洲人成网在线播放

Australian university uses algorithms to predict epileptic seizures
Source: Xinhua   2018-08-09 11:53:25

SYDNEY, Aug. 9 (Xinhua) -- An Australian-led study has adopted 10,000 crowdsourced algorithms to better predict epileptic seizures.

"The hope is to make seizures less like earthquakes, which can strike without warning, and more like hurricanes, where you have enough advance warning to seek safety," Dr. Levin Kuhlmann from the University of Melbourne's Graeme Clarke Institute and St. Vincent's Hospital said.

"Accurate seizure prediction will transform epilepsy management by offering early warnings to patients or triggering interventions."

Published on Thursday, the research began with a world-wide mathematical data science challenge in 2016.

Contestants were tasked with designing algorithms that could effectively distinguish between a pre-seizure and an inter-seizure.

With more than 646 participants and 478 teams, the most accurate algorithms were tested on patients with the lowest seizure prediction rates.

"Our evaluation revealed on average a 90-percent improvement in seizure prediction performance, compared to previous results," Kuhlmann said.

Effecting over 65 million people around the world, epilepsy can be "highly different" among individual sufferers.

"Results showed different algorithms performed best for different patients, supporting the use of patient-specific algorithms and long-term monitoring," Kuhlmann said.

Encouraged by the positive findings, researchers have now developed an algorithm and data sharing website called Epilepsy Ecosystem, to encourage others to share their work and help build on the project.

"It's about bringing together the world's best data scientists and pooling the greatest algorithms to advance epilepsy research," Kuhlmann said.

"Our results highlight the benefit of crowdsourcing an army of algorithms that can be trained for each patient and the best algorithm chosen for prospective, real-time seizure prediction."

Editor: mym
Related News
Xinhuanet

Australian university uses algorithms to predict epileptic seizures

Source: Xinhua 2018-08-09 11:53:25
[Editor: huaxia]

SYDNEY, Aug. 9 (Xinhua) -- An Australian-led study has adopted 10,000 crowdsourced algorithms to better predict epileptic seizures.

"The hope is to make seizures less like earthquakes, which can strike without warning, and more like hurricanes, where you have enough advance warning to seek safety," Dr. Levin Kuhlmann from the University of Melbourne's Graeme Clarke Institute and St. Vincent's Hospital said.

"Accurate seizure prediction will transform epilepsy management by offering early warnings to patients or triggering interventions."

Published on Thursday, the research began with a world-wide mathematical data science challenge in 2016.

Contestants were tasked with designing algorithms that could effectively distinguish between a pre-seizure and an inter-seizure.

With more than 646 participants and 478 teams, the most accurate algorithms were tested on patients with the lowest seizure prediction rates.

"Our evaluation revealed on average a 90-percent improvement in seizure prediction performance, compared to previous results," Kuhlmann said.

Effecting over 65 million people around the world, epilepsy can be "highly different" among individual sufferers.

"Results showed different algorithms performed best for different patients, supporting the use of patient-specific algorithms and long-term monitoring," Kuhlmann said.

Encouraged by the positive findings, researchers have now developed an algorithm and data sharing website called Epilepsy Ecosystem, to encourage others to share their work and help build on the project.

"It's about bringing together the world's best data scientists and pooling the greatest algorithms to advance epilepsy research," Kuhlmann said.

"Our results highlight the benefit of crowdsourcing an army of algorithms that can be trained for each patient and the best algorithm chosen for prospective, real-time seizure prediction."

[Editor: huaxia]
010020070750000000000000011100001373784431